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Abstract

The antioxidant potency of acetone extract/fractions of Acacia auriculiformis A. Cunn. was investigated by employing various in vitro

systems, such as DPPH, deoxyribose (site- and non-site-specific), reducing power, chelating power and lipid peroxidation in rat liver
homogenate. The bark powder of the plant was extracted with different solvents by a maceration method in order of increasing and
decreasing polarities and then partitioned (Flow Charts 1 and 2). It was observed that the fractions were comparatively more effective
than the crude acetone extract in all the assays. Maximum inhibitory activities noticed were 72.3%, 91.7%, 1.63, 83.3%, and 70.9% in
DPPH, deoxyribose, reducing power, chelating power and lipid peroxidation assays, respectively. The inhibitory potential was compared
with known antioxidants (ascorbic acid and BHT) and correlated with the total phenolic content in crude extract and fractions. Fractions
rich in polyphenolic content were more effective than crude extract. Further studies are underway to isolate and elucidate the structures
of the active principles.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Reactive oxygen species (ROS) cause DNA strand
breakage, sister chromatid exchanges and DNA–DNA
and DNA–protein cross-links, in addition to base modifi-
cations, which have been associated with carcinogenesis,
coronary heart disease, and many other health problems
related to advancing age (Cadenas & Davies, 2000; Honda,
Casadesus, Paterson, Perry, & Smith, 2004; Marnett, 2000;
Miquel & Romano-Bosca, 2004; Uchida, 2000). Since free
radicals play a key role in the pathology of diseases, the
supply of antioxidants, via the food chain, is of great
importance for a healthy life (Scalbert & Williamson,
2000). Foods of plant origin, such as fruits, vegetables
and medicinal plants have been suggested as natural
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sources of antioxidants (Auddy et al., 2002; Choi et al.,
2002; Mantle, Eddeb, & Pickering, 2000).

Bearing this in mind, the present work was designed to
investigate the antioxidative activity of acetone extract/
fractions of Acacia auriculiformis A. Cunn. by employing
DPPH radical, deoxyribose (site-specific and non-site-spe-
cific), reducing power, chelating power and lipid peroxida-
tion in vitro assays.

Acacia auriculiformis A. Cunn. is a vigorously growing,
deciduous or evergreen tree, possibly attaining 30 m height.
It belongs to the family Mimosaceae, and is found to be
rich in methylglucuronic acid, glucuronic acid, galactose,
arabinose and rhamnose (Anderson, 1978). It is reported
to have central nervous system-depressant, spermicidal
and filaricidal activities, due to the presence of tannins
and triterpenoid saponins (Garai & Mahato, 1997; Ghosh,
Sinha Babu, & Sukul, 1993; Parkashi, Ray, Pal, & Mahato,
1991).
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2. Materials and methods

2.1. Chemicals

10-10Diphenylpicryl-hydrazyl (DPPH), and 2-thiobarbi-
turic acid were obtained from Sigma Chemical Co. (St.
Louis, MO, USA) and deoxyribose was obtained from
Lancaster Synthesis Inc. USA. All other chemicals, namely
potassium ferricyanide, trichloroacetic acid, ferric chloride,
EDTA, hydrogen peroxide, L-ascorbic acid, sodium
hydroxide, BHA, Folin-Ciocalteu reagent, sodium carbo-
nate and other solvents, were procured from CDH and
were of analytical grade.

2.2. Preparation of extract

The dried and fine powdered bark material was
extracted by adding solvents in increasing order of solvent
polarity, namely hexane, chloroform, ethyl acetate, ace-
tone, methanol and water and in reverse order (Flow
Charts 1 and 2). After filtering through folded filter paper
(Whatman No. 1), the supernatant in different solvents was
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Flow Chart 1. Maceration extraction of bark powder of Aca
recovered and this process was repeated thrice with each
solvent. Then the respective solvents from the supernatant
were evaporated in a vacuum rotary evaporator to obtain
the crude extract (CE). From the different crude extracts,
the crude acetone extract was partitioned in double-dis-
tilled water and ethyl acetate to obtain the water fraction
(WF) and ethyl acetate fraction (EAF). For checking the
antioxidant activity, each extract/fraction was dried and
redissolved in methanol.

2.3. Determination of total phenolics

The total phenolic content (TPC) of the extract/fractions
of Acacia auriculiformis was determined by the method of
Folin-Ciocalteu (Kujala, Loponen, Klika, & Pihlaja,
2000), using gallic acid as standard. To 100 ll of extract/
fractions (20 lg/ml) were added 500-ll of (50%) Folin-Cio-
calteu reagent, followed by the addition of 1 ml of 20%
Na2CO3 solution. After a 20 min incubation at room tem-
perature, the absorbance was measured at 730 nm. The
total phenolic content was expressed as gallic acid equiva-
lents (GAE) in milligrammes per gram of samples.
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Flow Chart 2. Maceration extraction of bark powder of Acacia auriculiformis by decreasing order of solvent polarity.
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2.4. Antioxidant testing assays

2.4.1. General

The antioxidant activity of the acetone extract/fractions
was addressed by employing standard methods.

2.4.2. DPPH scavenging assay

The extracts/fractions were measured in terms of hydro-
gen-donating or radical-scavenging ability using the stable
radical, DPPH�, following the method given by Blois (1958)
with modification. Briefly, the reaction mixture contained
300 ll of extract/fraction (concentrations 1–100 lg/ml) and
2 ml of DPPH� (0.1 mM in methanolic solution). The reaction
mixture was then placed in the cuvette holder of the spectro-
photometer (Shimadzu-1601) and read at 517 nm against the
blank, which did not contain the extract/fraction. L-Ascorbic
acid was used as the positive control. The percent DPPH�

decolorization of the sample was calculated.

2.4.3. Reducing power assay
The reducing power of extract was determined by the

method of Oyaizu (1986) with modifications. Different
concentrations of extract (1 ml) were mixed with phosphate
buffer (2.5 ml, 0.2 M, pH 6.6) and potassium ferricyanide
[K3Fe(CN)6] (2.5 ml, 1%). The mixture was incubated at
50 �C for 20 min. Aliquots (2.5 ml) of trichloroacetic acid
(10%) were added to the mixture, which was then centri-
fuged for 10 min at 1036g. The upper layer of solution
(2.5 ml) was mixed with distilled water (2.5 ml) and FeCl3
(2.5 ml, 0.1%), and the absorbance was measured at
700 nm in a spectrophotometer. Increased absorbance of
the reaction mixture indicated increased reducing power.

2.4.4. Deoxyribose degradation assay
The non-site- and site-specific deoxyribose assays were

performed, following the method of Halliwell, Gutteridge,
and Aruoma (1987) and Arouma, Grootveld, and Halliwell
(1987) with slight modifications. In non-site-specific deoxy-
ribose assay Briefly, the extracts (from 1–100 lg/ml) were
mixed with a Haber–Weiss reaction buffer [10 mM FeCl3,
1 mM EDTA (pH 7.4), 10 mM H2O2, 10 mM deoxyribose,
and 1 mM L-ascorbic acid] and the final volume of all mix-
tures was made to 1.0 ml. The mixture was then incubated
at 37 �C for 1 h and heated at 80 �C for 30 min with 1 ml of
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2-TBA (0.5% 2-TBA in 0.025 M NaOH, 0.02% BHA) and
1 ml of 10% trichloroacetic acid (TCA) in a water bath for
45 min. After cooling, absorbance of the mixture was mea-
sured at 532 nm. A site-specific assay was performed, fol-
lowing slight modifications in which the EDTA was
replaced with the same volume of phosphate buffer, and
the percentage inhibition was calculated.

2.4.5. Chelating effects on ferrous ions

The chelating effect on ferrous ions was determined
according to the method of Dinis, Madeira, and Almeida
(1994) with some modifications. The extracts/fractions
(0.25 ml) were mixed with 1.75 ml of methanol and
0.25 ml of 250 mM FeCl2. This was followed by the addi-
tion of 0.25 ml of 2 mM ferrozine, which was left to react
at room temperature for 10 min before determining the
absorbance of the mixture at 562 nm.

2.4.6. Lipid peroxidation by thiobarbituric acid (TBA) assay

TBA reacts with malondialdehyde (MDA) to form a
diadduct, a pink chromogen, which can be detected spec-
trophotometrically at 532 nm (Halliwell & Guttridge,
1989). Normal male rats (250 g) were used for the prepara-
tion of liver homogenate. The perfused liver was isolated,
and a 10% (w/v) homogenate was prepared with a homog-
enizer at 0–4 �C with 0.15 M KCl. The homogenate was
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Fig. 1. Scavenging of hydroxyl radicals by acetone extract/fraction of Acac

degradation assay, respectively.
centrifuged at 800g for 15 min and the clear cell-free super-
natant was used for the study of in vitro lipid peroxidation.
Different concentrations (50–400 lg/ml) of extract/frac-
tions dissolved in methanol were taken in test tubes. One
millilitre of 0.15 M KCl and 0.5 ml of rat liver homoge-
nates were added to the test tubes. Peroxidation was initi-
ated by adding 100 ll of 0.2 mM ferric chloride. After
incubation at 37 �C for 30 min, the reaction was stopped
by adding 2 ml of ice cold HCl (0.25 N) containing 15% tri-
chloroacetic acid (TCA), 0.38% TBA and 0.5% BHT. The
reaction mixtures were heated at 80 �C for 60 min. The
samples were cooled, centrifuged and the absorbance of
the supernatants was measured at 532 nm.

2.5. Statistical analysis

All experiments were repeated at least three times.
Results are reported as means ± SE.

3. Results and discussion

3.1. General

Owing to the complexity of the oxidation–antioxidation
processes, it is obvious that no single testing method is
capable of providing a comprehensive picture of the anti-
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oxidant profile of a studied sample. Preliminary studies
confirmed that a multimethod approach is necessary in
the assessment of antioxidant activity. Independently of
the chosen method, suitable reference antioxidants should
be tested for comparison. A combination of rapid, sensi-
tive, and reproducible methods, preferably requiring small
sample amounts, should be used whenever an antioxidant
activity screening is designed. It was observed that, in gen-
eral, the extracts/fractions prepared by decreasing order of
solvent polarity showed more inhibitory potency than did
the extracts/fractions obtained in solvents in reverse order.
So the results of the former scheme are described in detail
in a further section.

3.2. DPPH scavenging assay

The acetone extract/fractions of Acacia auriculiformis

quenched DPPH free radical in a dose-dependent manner
because, as the concentration of extract/fractions increased,
the DPPH� quenching activity also increased (Fig. 2a). The
order of effectiveness of the extract and fractions was: water
fraction (72.3%) > ethyl acetate fraction (62.3%) > crude
extract (31.0%) for increasing order of solvent polarity
and water fraction (65.7%) > ethyl acetate fraction
(62.3%) > crude extract (26.9%) for decreasing order of sol-
vent polarity.
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Fig. 2. Scavenging of the DPPH radical and reducing power potential of ace
power assay (b), respectively.
The observed antioxidant activity of the extract/frac-
tions may be due to the neutralization of free radical char-
acter of DPPH�, either by transfer of an electron or
hydrogen atom (Naik et al., 2003). The ability of the
extract/fractions to scavenge the DPPH radical has also
been related to the inhibition of lipid peroxidation (Rekka
& Kourounakis, 1991).

3.3. Deoxyribose scavenging assay (site-specific and non-

site-specific)

Fig. 1a and b shows the effects of acetone extract and its
fractions in deoxyribose scavenging assays (non-site- and
site-specific, respectively). It was observed that all the
extract/fractions were effective in scavenging the hydroxyl
radicals in site-specific assay as well as in non-site-specific
assay but the change was comparatively greater in the
site-specific than in the non-site-specific assay, which indi-
cated their strong chelating power.

The order of effectiveness of the extracts/fractions as
antioxidants in site-specific assay was: water fraction
(91.7%) > ethyl acetate fraction (85.7%) > crude extract
(38.3%) and in non-site-specific assay, the order of inhibi-
tion was: water fraction (88.6%) > ethyl acetate fraction
(84.5%) > crude extract (36.0%).
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The potencies of extract/fractions, in both the assays,
indicate their efficacy as chelating agents, as well as their
capacity to compete with deoxyribose for OH radicals
which are produced free in solution from a Fe2+–EDTA
chelate (Asamari, Addis, Epley, & Krick, 1996).

3.4. Chelating power assay

Fig. 3a depicts the effect of extract/fractions in the chelat-
ing power assay. It was observed that the water fraction
(73.5%) showed more metal ion-chelation activity than
did the ethyl acetate fraction (70.2%) or the crude extract
(36.9%) obtained by increasing order of solvent polarity.
By contrast, with extract/fractions of decreasing order of
solvent polarity, the maximum effect was exhibited by
ethyl acetate fractions (83.3%), as compared to water frac-
tions (68.2%) and crude extract (38.5%) at 400 lg/ml
concentration.

The results obtained with this assay strengthen the
observation made in the deoxyribose assay, wherein
extract/fractions showed more effects in site-specific than
in non-site-specific assays. A possible explanation of the
chelating power of the extracts is the ability of the extracts
to reduce iron and then form Fe2+-extract/fraction com-
plexes that are inert. This study is in conformity with the
observation made in the literature that binding of iron to
flavonoid antioxidants can suppress the accessibility of
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Fig. 3. Chelating power (a) and lipid peroxidation (LPX inhibition) poten
the iron to oxygen molecules by changing the redox poten-
tial, thus converting the ferrous ion to ferric and thereby
inhibiting oxidative damage. Furthermore, it has been
reported that non-flavonoid polyphenolics can reduce iron
and then form Fe2+–polyphenol complexes that are inert
(Laughton, Halliwell, Evans, & Holult, 1987).

3.5. Reducing power assay

The results obtained in the reducing power assay are
shown in Fig. 2b. The water fraction had more reducing
potential (1.64, 1.42*) than did the ethyl acetate fraction
(1.60, 1.29*) or crude extract (0.588, 0.608*) in increasing
and decreasing* order of solvent polarities, respectively.
As mentioned in the literature, the reducing power evalua-
tion is an important parameter and it related to antioxidant
activity because the extract/fractions acted as reductones,
which inhibited LPO by donating a hydrogen atom,
thereby terminating the free radical chain reaction (Duh,
1998; Duh, Tu, & Yen, 1999; Tanaka, Kuie, Nagashima,
& Taguchi, 1988; Yen & Chen, 1995).

3.6. Lipid peroxidation assay

We measured the potential of acetone extract/fractions
of Acacia auriculiformis to inhibit lipid peroxidation in
rat liver homogenate, induced by the FeCl2–H2O2 system
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tial of acetone extract/fractions of Acacia auriculiformis, respectively.



Table 1
Total phenolic content (TPC) of acetone extracts/fractions of Acacia

auriculiformis, mg/g, as gallic acid equivalents (GAE)

Acetone extract TPC

Crude extract 300
Ethyl acetate fraction 495
Water fraction 775
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(Fig 3b). The hydroxyl radicals, generated via Fenton reac-
tion, were observed to be scavenged significantly by co-
incubation of rat liver homogenate with varying concentra-
tions of extract/fractions. Many workers have employed
this system to assess the biological activity of various nat-
ural plant-derived biomolecules (Halliwell et al., 1987; Pin-
Der-Duh, 1998). The water fraction exhibited more LPX
inhibition (73.3%, *70.9%) than did the ethyl acetate frac-
tion (68.2%, *64.6%) or crude extract (52.7%, *43.6%) at
700 lg/ml concentration of extract/fractions, for both
increasing and *decreasing orders of solvent polarities,
respectively.

A critical analysis of the results obtained in different
assays shows that the fractions were comparatively more
effective than were the crude extracts. In an attempt to
identify the antioxidant principle in the extract/fractions,
the total phenolic content was determined (Table 1). The
total phenolic content was 300, 495, 775 mg gallic acid
equivalents (GE) in each gram of the plant extract for
crude extract, ethyl acetate fraction and water fraction,
respectively. The amount of phenolic compounds was
observed to be greater in fractions than in crude extracts.
The free radical-scavenging activity in different assays can
be linked to the presence of phenolic compounds in the
extract/fractions because these compounds exhibit impor-
tant mechanisms of antioxidative activities (Yildirim
et al., 2000). The greater TPC (775 mg GE/g), detected in
the water fraction, suggests that this fraction may serve
as a dietary source of phenolic substances, which may act
as antioxidants for disease prevention and/or general
health promotion through improved nutrition.

Though other antioxidants were also probably present
in these extract/fractions, phenolic compounds could make
a significant contribution to their bioactivity. It is pertinent
to mention that the results obtained in the present study
are in conformity with our previous results on antimuta-
genic activity against genotoxic injury by NPD, sodium
azide and 2-aminofluoerene in the Ames Salmonella histi-
dine reversion assay and antioxidant activity employing
different in vitro methods (Arora et al., 2005; Kaur et al.,
2002; Kaur, Micheal, Arora, Harkonen, & Kumar, 2005;
Singh, Singh, Kumar, & Arora, 2004). The work further
reveals that the Acacia species, could be an interesting
source of antioxidants of potential use in different fields,
namely food, cosmetics, and pharmaceuticals. A detailed
chemical investigation of these extract/fractions is under-
way to identify the compounds responsible for the antiox-
idant activity.
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